Successful second language learning is tied to robust domain-general auditory processing and stable neural representation of sound

Magdalena Kachlickaa,c, Kazuya Saitob, Adam Tierneya,*

a Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom
b Institute of Education, University College London, Gower Street, London WC1E 6BT, United Kingdom
c Institute for Environmental Design and Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom

ARTICLE INFO

Keywords:
Auditory
Bilingualism
FFR
Language
Rhythm

ABSTRACT

There is a great deal of individual variability in outcome in second language learning, the sources of which are still poorly understood. We hypothesized that individual differences in auditory processing may account for some variability in second language learning. We tested this hypothesis by examining psychoacoustic thresholds, auditory-motor temporal integration, and auditory neural encoding in adult native Polish speakers living in the UK. We found that precise English vowel perception and accurate English grammatical judgment were linked to lower psychoacoustic thresholds, better auditory-motor integration, and more consistent frequency-following responses to sound. Psychoacoustic thresholds and neural sound encoding explained independent variance in vowel perception, suggesting that they are dissociable indexes of sound processing. These results suggest that individual differences in second language acquisition success stem at least in part from domain-general difficulties with auditory perception, and that auditory training could help facilitate language learning in some individuals with specific auditory impairments.

1. Introduction

In a globalized world, a growing number of people are moving to a new country and attempting to learn a second language (L2) in adulthood. However, L2 acquisition is characterized by large individual differences, with some people achieving near-native performance with ease while others produce heavily accented speech, struggle to comprehend speech, read at a rudimentary level, and display less grammatical and lexical knowledge (Li, 2016). Understanding the underlying mechanisms of L2 learning could lead to remedial approaches designed to boost L2 skills in struggling learners (DeKeyser, 2012).

Prior research on individual differences in L2 learning has found that greater success is linked to a variety of characteristics of the language input received. L2 learners are more successful, for example, when they are immersed in an L2 environment at an early age (Abrahamsson & Hyltenstam, 2009; Birdsong & Molis, 2001; Flege, Yeni-Komshian, & Liu, 1999), have been resident in an L2 environment for a greater amount of time (Flege, Bohn, & Jang, 1997; Trofimovich & Baker, 2006), and use their L2 more often on a daily basis (Dervin & Munro, 2013; Flege & Liu, 2001). Nonetheless, even after accounting for these characteristics of the input a substantial amount of variability in L2 learning success remains unaccounted for. This suggests that other factors are at play, some of which may be biological in nature, and may predispose some individuals to make better use of every learning opportunity, develop their second language system more efficiently and effectively, and attain more advanced proficiency in the long run (Foster, Bolibaugh, & Kotula, 2014).

The auditory channel is the primary source of language input for most people. Learning a language, therefore, requires complex auditory analysis: patterns of timing, pitch, and spectral shape must be tracked across multiple timescales. For example, listeners must be able to discriminate spectral and temporal patterns in order to distinguish between speech sounds and build an inventory of a language’s component sounds. Listeners must also be able to track patterns of pitch and duration in order to extract prosodic features such as accent, stress, and phrase boundaries (de Pijper & Sanderman, 1994; Fear, Cutler, & Butterfield, 1995; Turk & White, 1999). These prosodic features highlight relevant portions of the discourse (Wang, Li, & Yang, 2014) and provide cues to word boundaries (Cutler & Butterfield, 1992) and grammatical structure (Marslen-Wilson, Tyler, Warren, Grenier, & Lee, 1992). There are, therefore, links between auditory patterns and linguistic structure at every level, including phonetic, prosodic, lexical, and grammatical features.

One possible source of difficulties with L2 learning, therefore, may...
be impairments in the perception of auditory patterns. These may impede or delay the acquisition of phonological, semantic, and syntactic knowledge. The hypothesis that auditory processing may be a bottleneck for second language learning is supported by short-term training studies which have assessed auditory perception prior to asking participants to briefly learn a speech sound contrast from an unfamiliar language. These studies have found that rapid speech sound learning is linked to behavioural measures of auditory processing such as spectral (Langeris & Hazan, 2010; Wong & Perrachione, 2007) and temporal (Kempe, Bublitz, & Brooks, 2015; Kempe, Thoresen, Kirk, Schaeffer, & Brooks, 2012) discrimination acuity, as well as greater white matter density and volume in left Heschl’s gyrus (Golestani & Pallier, 2007; Golestani, Molk, Dehaene, LeBihan, & Pallier, 2007) and the robustness of neural encoding of speech (Chandrasekaran, Kraus, & Wong, 2011). Recently, we have shown that the robustness of neural encoding of speech is linked to English speech perception ability in native Japanese speakers (Omore, Jasmin, & Tierney, 2017) and to English speech production ability in native Mandarin Chinese speakers (Saito, Sun, & Tierney, 2018) living in the UK, suggesting that individual differences in auditory encoding may relate to L2 learning outside of the laboratory as well.

Prior investigation of relationships between auditory processing and L2 learning have focused entirely on speech perception and production. However, as mentioned above, detection of auditory cues can facilitate perception of prosodic features (Goswami et al., 2013), which communicate information about language structure at multiple levels, including syntax, pragmatics, and semantics. Indeed, research on first language acquisition in children has suggested that auditory processing may be related to a wide range of language skills. For example, children who struggle to acquire language skills such as the perception and use of syntax are also more likely to display a variety of auditory processing difficulties, including impaired frequency discrimination (McArthur & Bishop, 2005), duration discrimination, and amplitude rise-time discrimination (Richards & Goswami, 2015), worse discrimination of musical rhythms (Gordon et al., 2015), more variable synchronization to a metronome (Corriveau & Goswami, 2009), and diminished robustness of auditory brainstem responses to sound (Basu, Krishnan, & Weber-Fox, 2010). These findings suggest that difficulties with auditory processing may have consequences for second language acquisition that extend beyond speech perception, potentially also affecting the acquisition of linguistic knowledge at other levels, including syntax. However, to our knowledge this has not previously been investigated.

Here, we investigated the extent to which behavioral measurements of the precision of auditory processing and neural measurements of the robustness of sound encoding were linked to individual differences in the English-language skills of native Polish speakers living in London. Psychoacoustics, musical rhythm perception, and synchronization tests were used to measure auditory processing behaviourally. The frequency-following response (FFR), an electrophysiological response which reproduces the frequencies present in the evoking sound and reflects activity in the brainstem and cerebral cortex (Coffey, Herholz, Chepesiu, Baillet, & Zatorre, 2016), was used as a measurement of the neural encoding of sound. On the one hand, we predicted that English vowel perception would be linked to measures of spectral processing, given that this is the primary cue distinguishing English vowels (Peterson & Barney, 1952); these measures included frequency and formant discrimination as well as interval-phase locking in the neural representation of high-frequency speech formants. On the other hand, we predicted that English sentence grammaticality judgments would be linked to both spectral and temporal processing, as both of these dimensions are relevant to the perception of speech prosody. Moreover, given prior work showing that the consistency of the frequency-following response is linked to language skills in children (Hornickel & Kraus, 2013), we predicted that grammatical knowledge would also be linked to inter-trial phase-locking of the neural representation of the fundamental frequency of speech.

Finally, we investigated the extent to which variability in neural encoding of sound explained individual differences in auditory perceptual ability. Prior work has revealed links between the robustness of the frequency-following response and a variety of auditory skills, including the precision of auditory-motor synchronization (Tierney & Kraus, 2013, 2016; Tierney, White-Schwoch, MacLean, & Kraus, 2017), amplitude modulation detection (Purcell, John, Schneider, & Picton, 2004; Bharadwaj, Masud, Mehdrai, Verhulst, & Shinn-Cunningham, 2015), and frequency discrimination (Krishnan, Bidelman, & Gandour, 2010; Krishnan, Bidelman, Smalt, Ananthakrishnan, & Gandour, 2012; Marmel et al., 2013). However, as each of these studies examined relationships between the frequency-following response and either a single test or a narrow range of tests designed to measure similar skills (i.e. temporal processing), the specificity of these relationships remains unclear. Here we investigated correlations between behavioural and neural measures of auditory processing, to investigate whether different aspects of the neural encoding of sound reflect different dissociable auditory processing factors. In particular, we predicted that lower-frequency phase-locking (i.e. at the fundamental frequency) would be linked to temporal processing, while higher-frequency phase-locking (at the speech formants) would be linked to spectral processing.

2. Methods

2.1. Participants

All the participants provided their written consent to participate in the study before the beginning of the testing session. All procedures were approved by the Research Ethics Committee of the Department of Psychological Sciences at Birkbeck. Forty native speakers of Polish (29 female, age M = 25.63, SD = 4.76, range 19–39) speaking English as a second language who lived in the UK at least one year and not more than six years were recruited for this study. On average participants arrived in the UK at 21.9 (SD = 4.2, range 18–36) years of age, had been in the country for 3.6 (1.3, range 1.08–5.75) years, underwent 9.4 (4.4, range 0.5–20) years of in-class training in English prior to coming to the UK, and used English 65.7% of the time (19.8%, range 18.3% to 96.7%). 14 people reported having previously engaged in some musical training (M = 9.46 years, SD = 5.32, range 1–16). Participants were students enrolled in various undergraduate and graduate programmes or working professionals living in London. All participants reported no prior diagnosis of a hearing impairment or neurological disorder that affects hearing. One participant requested not to complete the electrophysiological battery, and so was only included in analyses examining behavioral variables.

2.2. Behavioural measures

2.2.1. Measures of experience

Demographic data and measures of experience were collected online via a custom-made questionnaire of language experience and proficiency, which we distributed to the potential participants to establish their eligibility for the study before inviting them for testing. There is a consensus among all relevant theories that experience is a necessary condition for any dimensions of successful second language learning (e.g., Ellis, 2006). Not surprisingly, it has often been reported that little learning takes place when second language learners choose to use their first language without many opportunities to interact with native and other non-native speakers in the target language (e.g., Jia & Aaronson, 2003). In the current study, however, our main focus lied in investigating the sources of individual variability among regular, active, and motivated second language users (Doughty, 2018). Our hypothesis was that the attainment of high-level second language proficiency could be tied to participants’ auditory processing abilities in addition to experience-related factors. To this end, a decision was made to recruit only those who used English as a main language of communication at
work or home. All participants had arrived in the UK after the age of 16 years. None reported prior diagnosis of a hearing impairment.

By tailoring two questionnaire instruments designed to capture demographic variables relevant to successful second language learning in naturalistic (Language Contact Profile: Freed, Dewey, Segalowitz, & Halter, 2004) and classroom settings (Foreign Language Experience Questionnaire: Saito & Hanzawa, 2016), we surveyed the following information: age of acquisition, length of residence, length of L2 English learning in classroom settings, frequency of use of English, and whether participants had previously received any musical training. Given that the degree of success in L2 learning is claimed to relate not only to quantity but also to quality (Flege, 2016), the nature of participants’ use of English was assessed as a percentage of language use, averaged across professional, social, and home settings. In addition, to gain a rough estimate of global language proficiency, participants were asked to self-assess their L2 English proficiency on a scale from 1 (heavily accented) to 9 (nativelike). Participants generally reported high proficiency (M = 6.80, SD = 1.54, range 2.5–9).

2.2.2. Auditory processing battery

All participants completed a battery of psychophysical assessments measuring thresholds for discrimination of pitch, amplitude rise time, duration, and formant frequency. Stimuli were complex tones, constructed using custom MATLAB (The MathWorks, Inc., Natick, MA) scripts, and modified as necessary for each test. An adaptive three-alternative forced-choice procedure was used, modified from the transformed up-down procedure described by Levitt (1971). That is, the difficulty of the task decreased after every incorrect response and increased after every third correct response. For all tests, a continuum of 100 stimuli was created. The test presentation began at stimulus level 50 with a starting step size of 10 (i.e., the task became easier by 10 steps after an incorrect response and more difficult by 10 steps after every third correct response). After a first reversal, the step size changed to five, after a second reversal to two, and after a third reversal to one and remained at this level until the end of the test. The program stopped either after 70 trials or eight reversals. Eight reversals were reached by 31 participants for the duration test, 20 participants for the frequency test, 25 participants for the formant test, and 25 participants for the rise time test. The score was calculated as the levels of each reversal from the second onward. In each test, three tones were presented with a constant inter-stimulus interval of 0.5 s, with either the first or the third sound different from the other two. Participants’ task was to indicate which sound was different by either pressing the number ‘1’ or ‘3’ on a keyboard.

The stimuli for the pitch, duration, and rise time discrimination tests were constructed by modifying a standard four-harmonic complex tone (equal amplitudes across harmonics) with a duration of 0.5 s, a 0.015 s linear ramp at the beginning and end, and an F0 of 330 Hz. For the pitch discrimination test, while the standard stimulus was always presented at a fundamental frequency (F0) of 330 Hz, the target stimulus continuum ranged from an F0 of 330.3–360 Hz. For the duration discrimination test, while the standard stimulus always had a duration of 0.25 s, the target stimulus duration continuum ranged from 0.2525 to 0.5 ms. For the rise time discrimination test, while the standard stimulus always had a rise time of 0.015 s, the target stimulus continuum ranged from 0.0178 to 0.3 s. For the formant discrimination test, stimuli were complex tones with an F0 of 100 Hz and harmonics up to 3000 Hz onto which three formants were imposed using a parallel formant filter bank (Smith, 2007). Stimuli were 0.5 s in duration with a 0.015 s linear ramp at the beginning and end. The first formant (F1) was kept constant at 500 Hz and third formant (F3) at 2500 Hz. The second formant (F2) of the standard stimulus was always 1500 Hz. The target stimulus continuum ranged from an F2 of 1502–1700 Hz. To form a composite measure of spectral processing, pitch and formant discrimination thresholds were converted to z-scores and averaged. To form a composite measure of temporal processing, rise time and duration discrimination thresholds were converted to z-scores and averaged.

2.2.3. Auditory-motor temporal integration

Two auditory-motor temporal integration tests were used to establish participants’ ability to detect and reproduce temporal patterns in non-verbal auditory stimuli. The base component stimulus for both tests consisted of a recording of a 150-ms conga drum hit acquired at freesound.org. The stimuli were presented using MATLAB through Etyomatic-3A audiometric insert earphones (Etyomatic, Elk Grove Village, IL) at 80-dB sound pressure level (SPL). Participants were asked to drum along to the stimuli by hitting a hand drum with their dominant hand such that their drum hits occurred at the same time as the stimulus onset. Drum hits were received by a microphone, with the alignment of audio presentation and participant drumming accomplished using an RTBox (Li, 2010) and custom MATLAB scripts.

In a metronome synchronization test, participants were asked to maintain a steady beat while synchronizing to an isochronous stimulus at multiple rates. In each block of the synchronisation test, participants heard 40 presentations of the drum sound, with an isochronous inter-stimulus interval. Participants were asked to synchronize as soon as they were able, but only their synchronization to the final 20 presentations was analysed, ensuring that the measurement was of variability of synchronization rather than speed of synchronization. Two blocks were included at each of three inter-onset-interval rates: 0.667, 0.5, and 0.333 ms (i.e., 1.5, 2, and 3 Hz). In a rhythm synchronization test, participants were asked to rapidly perceive and synchronize with a complex metrical rhythmic sequence. In each block of the rhythm synchronisation test, participants were presented with eight repetitions of a rhythm pattern 3.2 s in duration. Rhythm patterns were taken from Povel and Essens (1985) and consisted of 16 segments, each 200 ms, containing either a rest or a drum hit.

Drum hit onset times were marked offline by setting amplitude thresholds and relaxation times manually for each participant, such that any time point with amplitude exceeding the threshold was marked as a drum hit unless an amount of time less than the relaxation time had elapsed since the last hit. For the metronome synchronization test, performance was calculated as synchronization variability, measured using the coefficient of variation, i.e. the standard deviation of the interval between each drum hit and the closest stimulus onset, divided by the inter-onset interval, then averaged across trials. For the rhythm synchronization test, rhythmic accuracy was calculated by determining, for each segment of the target rhythm, whether the participant produced a rest or a drum hit in a 200 ms window centred on the onset of the segment, and then comparing the participant's response to the content of the target rhythm. The accuracy score for a given trial consisted of the number of segments produced correctly divided by the total number of segments. Scoring began at the onset of the second repetition.

2.2.4. Grammatical judgement test

A Grammatical Judgment Test (GJT; Godfroid, Loewen, Jung, & Park, 2015) was used to measure participants’ ability to indicate the syntactical acceptability of written sentences. Subjects were presented with 68 sentences written in the English language, 34 of which were grammatical and 34 ungrammatical. They were asked to rate their grammatical acceptability by pressing the ‘u’ key if a sentence was ungrammatical and a ‘g’ key if the sentence was grammatical. Participants were given only a few seconds to respond; this time limit varied from item to item, depending on stimulus length, following the time limits used by Godfroid et al. (2015). The grammatical forms manipulated covered a wide range of grammatical structures which second language learners of English have difficulty learning (e.g., plurals -s, possessives, indefinite articles, past tense). The final score was calculated as a sum of correct identifications of grammatical sentences and correct rejections of ungrammatical sentences. Participants were instructed to read each sentence silently, and in no case did a participant...
read the stimuli out loud.

2.2.5. Language aptitude test

A Language Aptitude Test was used to assess participants’ general predispositions to learn a second language. LLAMA is a set of language-neutral tests (Meara, 2005) based on the components of the Modern Language Aptitude Test (Carroll & Sapon, 1959). Being practically constrained by the amount of time available with each participant we could not administer the whole battery and so we focused on the measure of phonemic coding (LLAMA E), which has been shown to be a predictor of L2 pronunciation (e.g., Hu et al., 2013) and morphosyntax (e.g., Saito, 2017). LLAMA E is a test of the formation of sound-symbol associations measuring the ability to associate unfamiliar symbols with sounds and to dissociate sounds from the way that they are typically written in English. During the one-minute practice session, participants were asked to remember the 24 recorded syllables (consonant-vowel pairs) and their corresponding phonetic symbols. Then, their task was to identify which of the two presented spellings accurately represents the two-syllable word they heard (a total of 20 items). They had unlimited time to complete the task. The outcome measure was a portion of correct responses.

2.2.6. Speech perception test

A speech perception test was used to assess participants’ ability to perceive English speech contrasts which are known to be problematic for Polish learners of the English language due to cross-linguistic differences between English and Polish phonetic systems. Stimuli presented included vowel contrasts /æ/ versus / të/ (Rojczyk, 2010) and /æ/ versus /e/ (Schwartz, Aperlinski, Jekiel, & Malarski, 2016), consonant contrasts /g/ versus /k/ and /t/ versus /d/ (Rojczyk, 2012), and lexical stress contrasts (Peperkamp, Vendelin, & Dupoux, 2010). All contrasts were presented in a word context. There were 20 tokens for each contrast. All stimuli for the speech perception test were recorded by a native speaker of Southern British English and presented using custom MATLAB programmes. Participants were asked to listen to a spoken word and then to indicate the correct spelling from the two options displayed on the screen by either pressing the number ‘1’ or ‘2’ on the keyboard. The outcome measure was a portion of correct responses. Performance was at ceiling on the consonant items (M = 97.4%, SD = 4.2%) and at floor for the stress items (M = 53%, SD = 13.4%), and so only data from the vowel items was analysed further.

2.3. Electrophysiology

2.3.1. Stimulus

The stimulus used to evoke electrophysiological responses was the consonant-vowel syllable /da/ (170 ms in duration) synthesised with a Klatt-based synthesiser. The stimulus began with a 5 ms onset burst. Between 5 and 50 ms F1 rose from 400 to 720 Hz, F2 fell from 1700 to 1240 Hz, and F3 fell from 2580 to 2500 Hz. Between 50 and 170 F1, F2, and F3 were stable at 720 Hz, 1240 Hz, and 2500 Hz, respectively. F4, F5, and F6 were constant between 5 and 170 ms at 3300 Hz, 3750 Hz, and 4900 Hz, respectively. The F0 was constant throughout the stimulus at 100 Hz.

2.3.2. Data collection

The stimulus was presented diotically through Etymotic 3A insert earphones at 80 dB SPL. The stimulus was presented repeatedly (6300 times over the course of 25 min) at alternating polarities at a rate of 4.35 Hz. Presentation of alternating polarities enables separate examination of the amplitude envelope and temporal fine structure of speech (Aiken & Picton, 2008; see the Data Analyses section for details). During the recording, participants read a magazine or a book of their preference and were asked to relax and restrain from extraneous body movement and not to pay attention to the sound. Continuous electrophysiological data were recorded using a BioSemi ActiveTwo EEG system at a 16,384 Hz sample rate and with open filters in ActiView (BioSemi) acquisition software. A montage of five electrodes with a sintered Ag-AgCl pallet was used. One active electrode was placed on the top of the head (i.e., at Cz), two on the left and right earlobes as reference points and two on the forehead as ground electrodes.

2.3.3. Data processing

Neuropsychological data processing was conducted using custom MATLAB scripts. First, recordings were bandpass filtered from 70 to 2000 Hz using a first-order Butterworth filter. Next, each trial was epoched between −30 and 210 ms with respect to stimulus onset. Trials containing amplitude spikes of > 35 μV were rejected as artifacts, and the first 2500 artifact-free responses to each stimulus polarity were selected for analysis, for a total of 5000 sweeps. Finally, inter-trial phase locking analysis was used to measure the precision of neural sound encoding across trials on a frequency-by-frequency basis. For each trial, the time frequency spectrum was calculated using a Hanning windowed fast Fourier transform. This procedure generates, for each trial, an amplitude value and a phase value. The resulting vectors were then transformed into unit vectors, which retains the phase value but discards the amplitude, and averaged. The length of the resulting vector was calculated as a measure of inter-trial phase locking, which varies from zero (no consistency) to one (perfect consistency).

2.3.4. Data analyses

For analysis of neural encoding of the F0, inter-trial phase locking was calculated across all 5000 trials using the procedure described above for a response time window between 10 and 180 ms. F0 phase-locking was then calculated as maximum inter-trial phase coherence between 80 and 120 Hz. For analysis of neural encoding at F1 and F2, inter-trial phase locking was calculated only during the steady state (60–170 ms), i.e. during the portion of the response corresponding to the part of the stimulus in which the formants were constant. Moreover, before calculating phase-locking, the neural phase for trials corresponding to one polarity were flipped 180° relative to the other. This procedure emphasizes the temporal fine structure in the response, enabling investigation of the neural representation of the higher-frequency speech formants (Aiken & Picton, 2008). F1 phase-locking was then computed as the maximum inter-trial coherence between 680 and 720 Hz, while F2 phase-locking was computed as the mean of the maximum inter-trial coherence between 1180 and 1220 Hz and the maximum between 1280 and 1320 Hz.

Fig. 1 displays the stimulus waveform and spectrum (top two panels), as well as the response waveform and phase-locking across the spectrum for the added (middle two panels) and subtracted (bottom two panels) polarities analyses. This figure illustrates the close resemblance between the stimulus and response waveform, as well as the fact that the subtracted polarities analysis can be used to measure encoding of the formants but not the F0, while the added polarities analysis can be used to measure encoding of the F0 but not the formants.

2.4. Procedure

Data collection was conducted at the Department of Psychological Sciences at Birkbeck, University of London. Each testing session lasted approximately 150 min. Tasks were administered in the following order: Auditory Processing Battery, GJT, LLAMA-E, Speech Perception Task, and auditory-motor temporal integration tasks. As the last step, the FFR was recorded. All instructions was delivered in English with Polish translation by an L1 Polish speaking researcher where necessary to avoid any misunderstandings of the procedure. Participants were reimbursed 20£ in cash for their time upon completion of the testing session.
2.5. Analysis

Several variables were non-normally distributed, and so underwent transformation prior to analysis. A 1/x transformation was used for age of acquisition, a rau transform was used for the rhythm memory and language aptitude tests, and a log transform was used for the psycho-physical thresholds and F0 phase locking. Two outliers in synchronization variability were excluded (> 2 SD from the mean). False Discovery Rate was used to correct for multiple comparisons when conducting multiple correlations (Benjamoni-Hochberg procedure, Benjamini & Hochberg, 1995). Processed (but untransformed) data can be found on Open Science Framework at https://osf.io/gwxkb/.

3. Results

3.1. Language experience and auditory processing as predictors of L2 learning

To examine the extent to which language experience versus auditory processing explained variance in L2 learning success, we performed two multiple linear regressions with backward elimination, with grammatical judgment and speech perception as the predicted variables (Table 1). Auditory processing (temporal processing, spectral processing, synchronization variability, rhythm memory, and neural encoding of F0, F1, and F2), linguistic aptitude (LLAMA performance) and demographic measures (age, age of acquisition, length of residence, years of in-class training, musical training, and frequency of English use) were entered as potential predictors. Musical training was entered as a categorical predictor, with participants given a value of 0 if they had undergone no musical training, and 1 if they had experienced at least one year of musical training.

For grammatical judgment, age and length of residence emerged as significant demographic predictors, indicating that participants who displayed better grammatical knowledge had been resident in English-

<table>
<thead>
<tr>
<th>Predicted variable</th>
<th>Predictor</th>
<th>Standardized Beta</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammatical judgment</td>
<td>Temporal processing</td>
<td>−0.43</td>
<td>−3.53***</td>
</tr>
<tr>
<td></td>
<td>Synchronization variability</td>
<td>−0.37</td>
<td>−2.86**</td>
</tr>
<tr>
<td></td>
<td>Neural encoding of F1</td>
<td>−0.28</td>
<td>−2.29*</td>
</tr>
<tr>
<td></td>
<td>Length of residence</td>
<td>0.37</td>
<td>2.60*</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>−0.38</td>
<td>−2.79**</td>
</tr>
<tr>
<td>Speech perception</td>
<td>Spectral processing</td>
<td>−0.44</td>
<td>−3.84***</td>
</tr>
<tr>
<td></td>
<td>Synchronization</td>
<td>−0.35</td>
<td>−3.06**</td>
</tr>
<tr>
<td></td>
<td>variability</td>
<td>−0.07</td>
<td>−0.77</td>
</tr>
<tr>
<td></td>
<td>Neural encoding of F1</td>
<td>−0.27</td>
<td>−2.58*</td>
</tr>
<tr>
<td></td>
<td>Neural encoding of F2</td>
<td>0.39</td>
<td>3.57***</td>
</tr>
<tr>
<td></td>
<td>Age of acquisition</td>
<td>−0.34</td>
<td>−3.28**</td>
</tr>
<tr>
<td></td>
<td>Length of in-class training</td>
<td>−0.31</td>
<td>−2.72</td>
</tr>
</tbody>
</table>

* p < 0.05.
** p < 0.01.
*** p < 0.001.
speaking countries for longer amounts of time but were younger overall. Several auditory processing variables were also significant predictors, with more successful participants also showing more precise temporal processing, less variable auditory-motor temporal synchronization, and less robust neural encoding of F1. For speech perception, age of acquisition and length of in-class training emerged as significant demographic predictors, with better speech perception linked to earlier age of acquisition and shorter length of residence. Several auditory processing variables were also significant predictors, with more successful participants showing more precise spectral processing, less variable auditory-motor temporal synchronization, less robust neural encoding of F1, and more robust neural encoding of F2. For both grammatical judgment and speech perception, auditory processing variables were associated with the highest standardized betas, compared to language experience measures.

Given the large number of predictors included in the regression analyses and our moderate number of participants, some of the predictors outlined in the previous analysis could have been the result of overfitting. To provide a more stringent test of our hypothesis that auditory processing explains independent variance in L2 learning success even once demographic variables have been accounted for, we ran follow-up correlational analysis with False Discovery Rate correction for multiple comparisons. Partial correlations were conducted between behavioural and neural auditory processing measures and performance on the speech perception and grammatical judgment tests, with age, age of acquisition, length of residence, years of in-class training, and amount of daily English use as covariates (Table 2). As predicted, speech perception correlated with spectral processing ($r = -0.63$) and neural encoding of F2 ($r = 0.44$), such that more precise sound perception and more stable neural encoding were linked to more accurate vowel perception. Speech perception correlated with synchronization variability as well ($r = -0.46$), indicating that participants who were better able to perceive English vowels could more consistently synchronize to a metronome. Grammatical judgment correlated with spectral and temporal processing, indicating that participants who had more successfully acquired knowledge of English grammar could more precisely discriminate between sounds on the basis of both frequency and duration. Although in the regression analysis neural encoding of F1 emerged as a significant predictor of speech perception and grammatical knowledge, it did not significantly correlate with either outcome measure, making interpretation of the role of this predictor in the regression models difficult.

See Fig. 2 for scatterplots displaying the relationship between psychoacoustic thresholds, neural encoding of F2, and language skills. See Fig. 3 for a comparison of subtracted polarities phase-locking in participants with good versus poor English vowel perception (median split). This comparison demonstrates that the enhanced phase-locking in participants with good English vowel perception is largely limited to the frequency region surrounding F2 (1240 Hz).

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Speech perception</th>
<th>Grammatical judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral processing</td>
<td>-0.63^{**}</td>
<td>-0.43^{*}</td>
</tr>
<tr>
<td>Temporal processing</td>
<td>-0.27</td>
<td>-0.44</td>
</tr>
<tr>
<td>Synchronization variability</td>
<td>-0.44</td>
<td>-0.39</td>
</tr>
<tr>
<td>Rhythmic memory</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Neural encoding of F0</td>
<td>0.32</td>
<td>0.35</td>
</tr>
<tr>
<td>Neural encoding of F1</td>
<td>-0.05</td>
<td>-0.15</td>
</tr>
<tr>
<td>Neural encoding of F2</td>
<td>0.49</td>
<td>0.15</td>
</tr>
<tr>
<td>Linguistic aptitude</td>
<td>0.31</td>
<td>0.39</td>
</tr>
</tbody>
</table>

** $p < 0.01$.
* $p < 0.05$.
*** $p < 0.001$.

3.2. Relationships between neural encoding of speech and behavioural measures of auditory processing

In an attempt to provide a biological framework explaining individual differences in auditory processing, we investigated partial correlations between frequency-following-response encoding of F0, F1, and F2 (as measured using inter-trial phase-locking) and behavioural measures of auditory processing (Table 3), covarying for age, age of acquisition, length of residence, years of in-class training, and amount of daily English use. As predicted, participants who displayed more robust neural encoding of the fundamental frequency were also better able to synchronize consistently to a metronome ($r = -0.54$). No other correlations between neural encoding and behavioural measures of auditory processing approached significance ($p > 0.1$).

3.3. Relationships between language experience and auditory processing

To test the hypothesis that language experience can enhance auditory processing, age of acquisition, length of residence, and years of L2 class training were correlated with the neural and behavioural measures of auditory processing listed above with age as a covariate. No correlations survived correction for multiple comparisons ($p > 0.1$). Nevertheless, this null result should be interpreted with caution, given that several correlations reached significance prior to correction.

4. Discussion

Although age and experience-related variables strongly predict the extent to which early bilinguals can ultimately attain second language proficiency (younger and more practice is better), it has been shown that post-pubertal second language learning (age of acquisition > 16 years) is subject to a great deal of individual variability. Even if two adults practice a target language for the same amount of time in an identical manner, their outcomes may most likely differ in various dimensions of language (Doughty, 2018). Building on first language acquisition literature (e.g., Bishop & McArthur, 2005), and following our preliminary investigations (Omote et al., 2017; Saito et al., 2018), we asked whether and to what degree individual differences in auditory processing play a role in determining the degree of success among late second language learners. In the current investigation, we tested native Polish speakers living in London and found that proficient English grammatical knowledge and speech perception abilities were both linked to more precise auditory discrimination while speech perception was additionally linked to the robustness of neural responses to sound. Auditory processing and measures of language experience such as age of acquisition and length of residence explained independent variance in speech perception and grammatical judgment. Finally, we found that behavioural and neural auditory measures were largely uncorrelated, with the exception of a relationship between fundamental frequency neural phase-locking and synchronization variability.

Auditory processing was the strongest predictor of L2 learning success, exceeding the predictive power of language input characteristics such as age of acquisition and length of residence, as well as a test of language learning aptitude. The spectral psychoacoustic measures alone, for example, could explain 40% of the variance in speech perception. This suggests that some individuals who struggle to learn a second language may do so because they lack the auditory precision to detect phonetic and prosodic structure. It is possible that these individuals could benefit from auditory training programs designed to remediate these deficits, potentially increasing the efficacy of existing methods of language instruction. Spectral processing, for example, can be boosted by as little as a few hours of training (Michel, Delhommeeau, Perrot, & Oxenham, 2006), even in individuals who initially have very severe deficits (Whitford & Oxenham, 2018), and the robustness of neural encoding of the fundamental frequency can also be enhanced by short-term pitch discrimination training (Carcagni &
Given that these auditory processing tests are easily automated and quick to run, they could be a useful addition to test batteries assessing language learning aptitude. Historically, language aptitude tests have limited themselves to assessing short-term explicit learning of linguistic structure (Carroll & Sapon, 1959), and have had only modest success in explaining variance in L2 learning. A recent meta-analysis, for example, revealed that language aptitude explained an average of only 9.6% of the variance in L2 grammar learning (Li, 2014). There has been recent interest in expanding tests of language aptitude to include cognitive assessments (Linck et al., 2013); our finding that auditory processing measurements strongly predict various aspects of second language learning performance suggests that it would be worthwhile to include auditory processing measurements in language aptitude test batteries as well.

We find that individuals who encode the neural representation of the second formant of speech more robustly are also better able to perceive English vowels. This is in accordance with previous findings that vowel perception is linked to the extent to which the frequency-following response distinguishes between different vowels (Won et al.,

Table 3

<table>
<thead>
<tr>
<th></th>
<th>F0 encoding</th>
<th>F1 encoding</th>
<th>F2 encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral processing</td>
<td>-0.18</td>
<td>-0.12</td>
<td>-0.32</td>
</tr>
<tr>
<td>Temporal processing</td>
<td>-0.10</td>
<td>-0.29</td>
<td>-0.12</td>
</tr>
<tr>
<td>Synchronization variability</td>
<td>-0.54</td>
<td>-0.15</td>
<td>-0.10</td>
</tr>
<tr>
<td>Rhythmic memory</td>
<td>-0.01</td>
<td>-0.06</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

* p < 0.05.
** p < 0.01.
*** p < 0.001.
and that formant encoding in the frequency-following response tracks with the accuracy of segmental L2 production (Saito et al., 2018). Here we extend these results by showing that neural formant encoding and behavioural measurements of spectral processing explain independent variance in speech perception. This suggests that they reflect two different aspects of spectral processing. One possibility is that psychoacoustic measurements reflect the ability to make explicit auditory judgments and therefore draw upon attention and short-term memory, while the frequency-following response, which is relatively unaffected by cognitive state (Varghese, Bharadwaj, & Shinn-Cunningham, 2015), is an implicit measurement which primarily reflects bottom-up perceptual resolution and fidelity. Together, these metrics may form a more comprehensive picture of an individual’s capacity for second language learning.

We find that the link between robust auditory processing and successful L2 acquisition extends beyond speech perception to other language skills, as better L2 grammatical judgment tracked with more precise auditory perception. This suggests that precise representation of the acoustic characteristics of speech is foundational for the acquisition of syntactical knowledge. For example, imprecise auditory perception may interfere with the perception of prosodic features such as phrase boundaries, which are conveyed by brief changes in pitch and duration (de Pijper & Sanderman, 1994). Difficulties with prosody perception, in turn, could delay the acquisition of syntax, given that listeners can use prosody to detect hierarchical structure in language (Langus, Marchetto, Bion, & Nespor, 2012; Marslen-Wilson et al., 1992).

Extensive prior work has shown that rhythm skills—i.e. the ability to perceive and produce patterns in time—are linked to language skills in children (Corriveau & Goswami, 2009; David, Wade-Wolley, Kirby, & Smithrim, 2007; Dellatolas, Watier, Le Normand, Lubart, & Chevrie-Muller, 2009; Douglas & Willatts, 1994; Flaugnacco et al., 2014; González-Trujillo, Defior, & Gutiérrez-Palma, 2014; Gordon et al., 2015; Huss, Verney, Fosker, Mead, & Goswami, 2011; McGivern, Berka, Laugier, & Chapman, 1991; Strait, Hornickel, & Kraus, 2011; Thomson & Goswami, 2008; Tierney & Kraus, 2013; Tierney et al., 2017; Woodruff Carr, White-Schwoch, Tierney, Strait, & Kraus, 2014). Here we show for the first time that rhythmic skill, in particular synchronization, is linked to second language acquisition in adulthood as well. Temporal patterns across multiple time scales convey a wealth of information about the structure of language, including phase boundaries (de Pijper & Sanderman, 1994), word boundaries (Smith, Cutler, Butterfield, & Nimmo-Smith, 1989), lexical stress (Liberman & Prince, 1977), and phonetic distinctions such as voicing (Lisker, 1957). Adults learning a second language who can also more easily detect and reproduce patterns in time may benefit more from the information hidden in temporal patterns of speech, potentially facilitating the acquisition of phonetic, semantic, and syntactic knowledge.

Our finding of a link between rhythm perception and production and second language acquisition is in line with our precursor research which demonstrated that adult second language learners with greater rhythmic sensitivity spoke more fluently (with faster speech rate and fewer pauses and repetitions) (Saito et al., 2018). This relationship between rhythm perception and second language learning may help explain prior findings of links between musical training and second language learning success (Cooper, Wang, & Ashley, 2017; Dittlinger, D’Imperio, & Besson, 2018; Martínez-Montes et al., 2013; Slevc & Miyake, 2006; Swaminathan & Gopinath, 2013). Musicians demonstrate enhanced rhythm skills, including more precise synchronization and more accurate rhythm memory (Bailey & Penhune, 2010; Krause, Pollok, & Schnitzler, 2010), which may help them benefit from temporal structure in speech.

The auditory processing impairments which we find to be tied to difficulties with second language acquisition are strikingly similar to the auditory difficulties which have been linked to developmental language disorders. Children with dyslexia, for example, are more likely to display problems with the perception of temporal and spectral features (Ahissar, Protopapas, Reid, & Merzenich, 2000; Amitay, Ahissar, & Nelken, 2002; Casini, Pech-Georgel, & Ziegler, 2017; Gibson, Hogben, & Fletcher, 2006; Goswami et al., 2010; McArthur & Bishop, 2005; Talcott et al., 2000), to struggle to synchronize to a metronome (Thomson & Goswami, 2008), to have difficulty remembering rhythm patterns (Flaugnacco et al., 2014), and to have neural responses to sound which are more variable across trials (Hornickel & Kraus, 2013; Lizarazu et al., 2015). Some research in second language acquisition assumes that first language acquisition in childhood and second language acquisition in adulthood are characterized by different underlying mechanisms (Abrahamsson & Hylenstam, 2009; DeKeyser, Alfi-Shaba, & Ravid, 2010). According to this theory (i.e., Critical Period Hypothesis), upon leaving a putative critical period learners shift from implicit learning mechanisms (statistical learning) to explicit learning mechanisms (conscious inference of linguistic rules). Our results, on the other hand, suggest that difficulties with auditory encoding can be a bottleneck for language acquisition both in childhood and later in life. Thus, some of the mechanisms which facilitate language learning may continue to play similar roles throughout the lifespan (Birdsong & Molis, 2001; Flege et al., 1999; Hamrick, Lum, & Ullman, 2018).

Based on prior work reporting correlations between the robustness of the frequency-following response and the precision of auditory processing (Bharadwaj et al., 2015; Krishnan et al., 2010, 2012; Marmel et al., 2013; Purcell et al., 2004; Tierney & Kraus, 2013, 2016; Tierney et al., 2017), we predicted that neural encoding would relate to both spectral and temporal processing. Instead, although we found that greater phase-locking at the fundamental frequency was linked to more precise synchronization (replicating Tierney & Kraus, 2013), we found no significant correlations between psychoacoustic thresholds and neural encoding. To some extent this null result may be explained by methodological differences between the current study and previous studies. In particular, Purcell et al. (2004) and Bharadwaj et al. (2015) measured temporal processing using amplitude modulation detection, while we measured duration and amplitude rise time discrimination. Given that our design required participants to hold stimuli in memory and compare them, our measurements may have had a greater cognitive load, reflecting individual differences in cognitive skills such as attention and auditory short-term memory. As the frequency-following response is relatively unaffected by cognitive state (Varghese et al., 2015), measures of auditory processing under a greater cognitive load may be less closely tied to the early auditory neural encoding measured by the FFR (Coffey et al., 2016). This could explain why the only temporal processing measure that related to neural encoding was synchronization variability, a measure which in part reflects rapid, very precise subconscious auditory-motor integration (Repp, 2000). This explanation, however, cannot account for our non-replication of the finding that frequency-following response encoding is linked to frequency discrimination (Krishnan et al., 2010, 2012; Marmel et al., 2013). Even so, given that there was a weak tendency in our dataset for more robust neural encoding to be linked to more precise frequency discrimination, it is possible that we lacked the power to detect this relationship.

Cross-sectional studies cannot conclusively distinguish between predictors and consequences of language learning success. We did not find any significant correlations between either years of immersion in the UK or years of in-class training in Poland and auditory processing, arguably because much rapid learning happens within first few months of immersion, followed by relatively slow and plateaued development patterns (Munro & Derwing, 2008). Focusing on moderately experienced second language learners (length of residence > 1 year), our cross-sectional investigation of their biodemographic, audition and linguistic profiles suggests that pre-existing individual differences in auditory processing help determine success beyond the early phase of L2 learning. Nevertheless, it is plausible that experience learning a second language could have subtle effects on auditory processing which our results may partially reflect. Indeed, prior research has shown that
bilinguals have enhanced neural phase-locking to the fundamental frequency of speech (Krizman, Marian, Shook, Skoe, & Kraus, 2012; Krizman, Skoe, & Kraus, 2016; Krizman, Skoe, Marian, & Kraus, 2014; Omote et al., 2017), greater grey matter volume within auditory cortex (Ressel et al., 2012), and enhanced musical rhythm perception (Roncaglia-Denissen, Roor, Chen, & Sadakata, 2016). Future longitudinal work examining auditory processing and L2 knowledge before and after immersion in a second language environment could help disentangle the roles of pre-existing differences versus neural plasticity in mediating the relationship between auditory processing and language learning.

Declaration of interest

None.

Acknowledgements

The authors would like to thank all of the participants for taking part in this study. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Krizman, J., Skoe, E., & Kraus, N. (2016). Bilingual enhancements have no socioeconomic